Generowanie rozktadu
rownomiernego

Dariusz Borkowski

L

iczbg prawdziwie losowg nazywamy nieprzewi-
dywalng wartoé¢ zmiennej losowej. Zrédtem liczb
prawdziwie losowych moga by¢ generatory fizycz-
ne np. rzut moneta, szum w urzadzeniach elektro-
nicznych, promieniowanie kosmiczne. Niestety te-
go typu generatory s3 zbyt wolne lub maja problem
ze stabilno$cig (zmiana warunkéw fizycznych moze
istotnie zmieni¢ wtasnosci probabilistyczne).

Liczby pseudolosowe s3 to liczby otrzymywane
wedtug $cistej formuty matematycznej. Sg one od-
twarzalne a przez to w ogdle nielosowe w sensie
matematycznym. Maja jedynie "wyglad" losowo-
$ci tzn. ich wtasnosci statystyczne s3 bardzo bli-
skie wtasnosciom liczb prawdziwie losowych. Kto$
kto nie zna formuty, wedtug ktérej sa generowa-
ne, nie powinien by¢ w stanie stwierdzi¢, ze nie s3
to liczby prawdziwie losowe. Zrédtem liczb pseu-
dolosowych s3 generatory matematyczne (progra-
my). Dlatego tez liczby pseudolosowe s3 nazywane
po prostu liczbami losowymi, a matematyczne al-
gorytmy do ich otrzymywania generatorami liczb
losowych.

Generatory liniowe

Ogodlna postac generatora liniowego jest nastepu-
Jjaca:

Xn = (aan71+a2Xn72+' ' '+aanfk+C) mod m,

gdzie a1, ...,ax,c,m € N s3 parametrami genera-
tora oraz dziatanie a mod b zwraca reszte z dzie-
lenia a przez b.

W pierwszej kolejnosci musimy zainicjowaé ge-
nerator poprzez dostarczenie danych poczatkowych
Xo, X1, ..., Xg. Maksymalny okres generatora ja-
ki mozna otrzymac dla odpowiednio dobranych pa-
rametréw wynosi m* — 1.

Popularna implementacja (np. w starych biblio-
tekach C/C++, Pascal) jest generator

X, = (aXp—1+¢) modm. (1)

a c m Nazwa/autor
216 +3 0 231 RANDU (IBM)
22.237+1 0 235 Zielinski (1966)
69069 1 232 Marsaglia (1972)
16807 0| 23T —1 | Park, Miller (1980)
40692 0 251 —249 | L'Ecuyer (1988)
68909602460261 | 0 218 Fishman (1990)

Tabela 1: Przyktadowe parametry generatora (1) o
maksymalnym okresie

Lepsze wtasnosci statystyczne od (1) maja ge-
neratory w ogdlniejszej postaci np.

X, = (1176X,,_1 + 1476 X,,_o+

1776X,,_3) mod m, m=2%% -5 (2)
X, =28(X, 1+ X ot

X,_3) modm, m=2%?—5, (3)
X, = (1995X,,_1 + 1998X,,_o+

2001X,_3) mod m, m = 2% — 849, (4)
Xp =219(X,—1 + Xp—o+

X,—3) mod m, m = 2% — 1629. (5)

Podstawowa wadg generatoréw liniowych jest to,
ze wielowymiarowe rozktady wygladaja bardzo nie-
losowo tzn. wykazuja efekt Marasaglii. Polega on
na tym, ze wielowymiarowe rozktady ukfadaja sie
na regularnych hiperptaszczyznach dla ktérych zna-
ne s3 metody znajdowania odlegtosci.

Zadanie 1. Zaimplementuj w C/C++ generator
(3).
Rozwigzanie:

#include <stdio.h>
#include <math.h>
static double a,b,c;
void init_ecng(int ia, int ib, int ic){
a=ia; b=ib; c=ic;
}
double ecng(){
static int n;
static double d,x;
d=(a+b+c)*8192;
x=fmod (d,4294967291.0) ;
a=b; b=c; c=x;
/* zamieniamy liczbe 32-bitowa
na typ double i przedzial

(0,1) */
if (x<(float)2147483648.)n=(int)x;
else n=(int) (x-4294967296.);
return (n*2.3283064365e-10+0.5);

}

void main(void){
int 1i;
init_ecng(12,34,56);
for(i=0;i<100;i++)
printf ("%f\n",ecng());

}

Generatory oparte na rejestrach przesuwnych

Tego typu generatory tworza ciag bitéw wedtug
wzoru

b, = (albnfl + -+ akbnfk) mod 23

gdzie aj,az,...,a; € {0,1}. Nastepnie wybiera-
my fragmenty L-bitéw i zamieniamy na liczby z
przedziatu (0,1)

L
Ui = Z2ijbi5+j = 0.b¢s+1 ce bis-‘rln s < L,

j=1

gdzie s jest ustalong liczbg catkowita. Jezeli s nie
ma wspdlnych dzielnikéw z 28 — 1, to ciag {U;}
ma maksymalny okres ktéry wynosi 2F — 1.
Najwieksza zaleta tych generatordw jest to, ze s3
tatwe do implementacji poniewaz (a+b) mod 2 =

a xor b. Niestety nie spetniaja one niektérych naj-
nowszych testéw statystycznych.

W literaturze znane s3 dwa szczegdlne przypadki
tych generatoréw. Pierwszym z nich jest generator
Tauswortha (1965) opisany wzorem

by = bp_pxorby,_q, p > q.
A sam algorytm Tauswortha jest nastepujacy:

Niech A bedzie L - bitows liczba catkowitg o
bitach poczatkowych by, ..., b, (Up). Niech
B bedzie L - bitowa zmienna pomocnicza
orazg<p/2i0<s<p-—gq.

1. B= (A< q)xorA) < (L —p)

2. A= (A< s)xor (B> (L —5s))

3. Return A: goto 1,

gdzie A < k oznacza przesuniecie bitéw reprezen-
tacji binarnej o k pozycji w lewo i uzupetnienie

zerami zwolnionych bitéw.

Drugi powszechnie znany generator Tezuki (1995)
jest kombinacja trzech generatoréw Tauswortha i
zwraca

AWM xor A xor A®),

gdzie A jest wynikiem i - tego generatora Tau-
swortha.

Zadanie 2. Zaimplementuj w C/C++ algorytm
Tezuki dla L = 32 oraz

Generator

p | q | s (inigjalizacja) | s (generacja)
1. 28 1 9 4 13
2. 29 | 2 3 20
3. 31| 6 1 17

Rozwigzanie:

#include <stdio.h>

static unsigned int sl1,s2,s3;

void init(unsigned int i, unsigned int j,

unsigned int k){

unsigned int b;
sl=i; s2=j, s3=k;
b=((s81<<9)"s1)<<4;
s1=(s1<<4) " (b>>28);
b=((52<<2) "82)<<3;

52=(82<<3) " (b>>29) ;
b=((s3<<6) "83)<<1;
s3=(s3<<1) " (b>>31);

}

double combT(){
unsigned int b;
b=((81<<9) "s1)<<4;
s1=(s1<<13) " (b>>19);
b=((82<<2) "s2)<<3;
52=(82<<20) " (b>>12) ;
b=((83<<6) "83)<<1;
83=(83<<17) " (b>>15);
return (s17s27s3)%*2.3283064365e-10;

}

void main(void){
int i;
init(12,34,56);

for(i=0;i<100;i++)

printf("%f\n",combT());

Generatory Fibonacciego

Pierwszy tego typu generator zostat zaproponowa-
ny przez Taussky i Todd (1956). Jest on imple-
mentacja wzoru rekurencyjnego Fibonacciego

Xn=X, 2+X,.1 mod m,n> 2.

Niestety nie spetnia on testéw niezaleznosci liczb
losowych. Tej wady nie ma bardziej ogélna postaé
generatora, ktérg oznaczamy F'(r, s,®), a zadana
jest wzorem

Xn=(Xnr ©Xp—s) mod mynzr>szl,

gdzie ® oznacza jedna z operacji +, —, *, Xor.
Jezeli m = 2%, to okres generatoréw F(r,s,+),
F(r,s,—) wynosi (2r—1)F~1 generatora F(r, s, ¥)
wynosi (2r — 1)£73, a generatora F(r, s,xor) wy-

nosi (2r —1). Najlepsze wtasnoéci statystyczne ma
generator z operacja mnozenia.

Tabela 2: Przyktadowe wartosci r i s dajace mak-
symalne okresy

r | 17 | 31 | 55 | 68 | 97 | 607 | 1279
5 | 13|24]33] 33| 273 | 418

Zadanie 3. Zaimplementuj w C/C++ generator
F(97,33,0), gdzie

_ r—y 962317
on{ r—y+1 z<y.

Zainicjuj poczatkowa tablice 97 liczb za pomoca
ciagu bitéw

(0.b1b2 N b24, 0.b25b26 ce b48, .)
gdzie b, liczymy nastepujaco

Yn = (yn—S *Yn—2 - yn—l) mod 179
zn = (522,71 +1) mod 169

b 0 (yn-2z, mod 64) < 32
"1 1 wpp.

Rozwigzanie:

#include <stdio.h>
#include <math.h>
static double uul97];
static int ip=97;
static int jp=33;
void restart(int i, int j, int k, int 1){
int ii,jj,m,wi,wj,wk,wl; double s,t;
wi=i;wj=j;wk=k;wl=1;
for(ii=0;ii<97;ii++){
s=0;t=0.5;
for(jj=1;jj<=24;jj++){
m=(((wixwj)%179) *wk)%179;
wi=wj; wj=wk; wk=m;
wl=(53*wl+1)7%169;
if ((wl*m)%64>=32)s+=t;
t*=0.5;
}

uuliil=s;

(-

double uni(void){
double pom;
pom=uu[ip-1]-uul[jp-1];
if (pom<0.0)pom+=1;
uul[ip-1]=pom;
ip—-;
if (ip==0) ip=97;
jp—;
if (jp==0) jp=97;
return(pom) ;

}

void main(void){
int 1i;
restart(12,34,56,78);

for(i=0;i<100;i++)
printf ("%f\n",uni());

Generatory uniwersalne

Przez generator uniwersalny rozumiemy generator
dajacy identyczne wyniki na komputerach, w kté-
rych liczby catkowite s3 reprezentowane przez co
najmniej 16 bitéw, a liczby w arytmetyce zmienno-
pozycyjnej maja przynajmniej 24 bitowa mantyse.

Przyktadem takiego generatora jest generator
MZT (Marsaglia, Zaman, Tsanga, 1990) generu-
jacy liczby losowe o rozktadzie réwnomiernym na
odcinku [0,1). Spetnia on wszystkie znane testy
statystyczne i ma duzy okres, réwny 244, Genera-
tor ten jest kombinacja dwdch prostych generato-
réow

Un = Vnoc’ru

gdzie V,, jest wynikiem generatora F'(97,33,0), a

Cn =Cn_1 * (7654321.0/16777216.0), n > 2,
¢; =362436.0/16777216.0

ed— c—d c>d
CFET e—d+16777213.0/16777216.0 ¢ < d.

Zadanie 4. Zaimplementuj w C/C++ generator
MZT.

Rozwigzanie:

#include <stdio.h>
#include <math.h>
static double uul[97];
static int ip=97;
static int jp=33;
static double cc=362436.0/16777216.0;
static double cd=7654321.0/16777216.0;
static double cm=16777213.0/16777216.0;
void restart(int i, int j, int k, int 1){
int ii,jj,m,wi,wj,wk,wl; double s,t;
wi=i;wj=j;wk=k;wl=1;
for(ii=0;ii<97;ii++){
s=0;t=0.5;
for(jj=1;jj<=24;jj++{

m=(((wi*wj)%179) *wk)%179;
wi=wj; wj=wk; wk=m;
wl=(53*wl+1)%169;
if ((wl*m)’%64>=32)s+=t;
t*=0.5;
}
uuliil=s;
}
}
double uni(void){
double pom;
pom=uu[ip-1]-uul[jp-1];
if (pom<0.0)pom+=1;
uul[ip-1]=pom;
ip--;
if (ip==0) ip=97;
jp—;
if (jp==0) jp=97;

cc—=cd;
if (cc<0.0)cc+=cm;

pom-=cc;
if (pom<0.0)pom+=1;
return(pom) ;

}

void main(void){
int i;

restart(12,34,56,78);
for(i=1;i<100;i++)
printf ("%f\n",uni());

Uwaga 1. Nie ma Zadnego wyraznego powodu by
formuty rekurencyjne miaty dawac liczby losowe
lub nawet wygladajace na losowe. To, Ze tak jest
wydaje sie raczej zaskakujace! Catkowicie rézny od
przedstawionych generatoréw jest generator o na-
zwie RANLUX. Niestety nie ma zrozumienia dla
teorii na podstawie, ktérej powstat. Przeszedt on
pomysinie wszystkie najsurowsze testy statystycz-
ne. Jednak jest on pomijany milczeniem przez nie-
mal wszystkich matematykéw i ekspertéw od ge-
neratoréw liczb losowych.

