
Generowanie rozkładu
równomiernego

Dariusz Borkowski

L
iczbą prawdziwie losową nazywamy nieprzewi-

dywalną wartość zmiennej losowej. Źródłem liczb
prawdziwie losowych mogą być generatory fizycz-
ne np. rzut monetą, szum w urządzeniach elektro-
nicznych, promieniowanie kosmiczne. Niestety te-
go typu generatory są zbyt wolne lub mają problem
ze stabilnością (zmiana warunków fizycznych może
istotnie zmienić własności probabilistyczne).

Liczby pseudolosowe są to liczby otrzymywane
według ścisłej formuły matematycznej. Są one od-
twarzalne a przez to w ogóle nielosowe w sensie
matematycznym. Mają jedynie "wygląd" losowo-
ści tzn. ich własności statystyczne są bardzo bli-
skie własnościom liczb prawdziwie losowych. Ktoś
kto nie zna formuły, według której są generowa-
ne, nie powinien być w stanie stwierdzić, że nie są
to liczby prawdziwie losowe. Źródłem liczb pseu-
dolosowych są generatory matematyczne (progra-
my). Dlatego też liczby pseudolosowe są nazywane
po prostu liczbami losowymi, a matematyczne al-
gorytmy do ich otrzymywania generatorami liczb
losowych.

Generatory liniowe

Ogólna postać generatora liniowego jest następu-
jąca:

Xn = (a1Xn−1+a2Xn−2+· · ·+akXn−k+c) mod m,

gdzie a1, . . . , ak, c,m ∈ N są parametrami genera-
tora oraz działanie a mod b zwraca resztę z dzie-
lenia a przez b.
W pierwszej kolejności musimy zainicjować ge-

nerator poprzez dostarczenie danych początkowych
X0, X1, . . . , Xk. Maksymalny okres generatora ja-
ki można otrzymać dla odpowiednio dobranych pa-
rametrów wynosi mk − 1.
Popularną implementacją (np. w starych biblio-

tekach C/C++, Pascal) jest generator

Xn = (aXn−1 + c) mod m. (1)

a c m Nazwa/autor
216 + 3 0 231 RANDU (IBM)
22 · 237 + 1 0 235 Zieliński (1966)
69069 1 232 Marsaglia (1972)
16807 0 231 − 1 Park, Miller (1980)
40692 0 231 − 249 L’Ecuyer (1988)

68909602460261 0 248 Fishman (1990)

Tabela 1: Przykładowe parametry generatora (1) o
maksymalnym okresie

Lepsze własności statystyczne od (1) mają ge-
neratory w ogólniejszej postaci np.

Xn = (1176Xn−1 + 1476Xn−2+

1776Xn−3) mod m, m = 232 − 5, (2)
Xn = 213(Xn−1 +Xn−2+

Xn−3) mod m, m = 232 − 5, (3)
Xn = (1995Xn−1 + 1998Xn−2+

2001Xn−3) mod m, m = 235 − 849, (4)
Xn = 219(Xn−1 +Xn−2+

Xn−3) mod m, m = 232 − 1629. (5)

Podstawową wadą generatorów liniowych jest to,
że wielowymiarowe rozkłady wyglądają bardzo nie-
losowo tzn. wykazują efekt Marasaglii. Polega on
na tym, że wielowymiarowe rozkłady układają się
na regularnych hiperpłaszczyznach dla których zna-
ne są metody znajdowania odległości.

Zadanie 1. Zaimplementuj w C/C++ generator
(3).

Rozwiązanie:

#include <stdio.h>
#include <math.h>
static double a,b,c;
void init_ecng(int ia, int ib, int ic){

a=ia; b=ib; c=ic;
}
double ecng(){

static int n;
static double d,x;
d=(a+b+c)*8192;
x=fmod(d,4294967291.0);
a=b; b=c; c=x;
/* zamieniamy liczbe 32-bitowa

na typ double i przedzial

(0,1) */
if(x<(float)2147483648.)n=(int)x;
else n=(int) (x-4294967296.);
return (n*2.3283064365e-10+0.5);

}
void main(void){

int i;
init_ecng(12,34,56);
for(i=0;i<100;i++)
printf("%f\n",ecng());

}

�

Generatory oparte na rejestrach przesuwnych

Tego typu generatory tworzą ciąg bitów według
wzoru

bn = (a1bn−1 + · · ·+ akbn−k) mod 2,

gdzie a1, a2, . . . , ak ∈ {0, 1}. Następnie wybiera-
my fragmenty L-bitów i zamieniamy na liczby z
przedziału (0, 1)

Ui =
L∑
j=1

2−jbis+j = 0.bis+1 . . . bis+L, s ¬ L,

gdzie s jest ustaloną liczbą całkowitą. Jeżeli s nie
ma wspólnych dzielników z 2k − 1, to ciąg {Ui}
ma maksymalny okres który wynosi 2k − 1.
Największą zaletą tych generatorów jest to, że są

łatwe do implementacji ponieważ (a+b) mod 2 =

a xor b. Niestety nie spełniają one niektórych naj-
nowszych testów statystycznych.

W literaturze znane są dwa szczególne przypadki
tych generatorów. Pierwszym z nich jest generator
Tauswortha (1965) opisany wzorem

bn = bn−p xor bn−q, p > q.

A sam algorytm Tauswortha jest następujący:
Niech A będzie L - bitową liczbą całkowitą o
bitach początkowych b1, . . . , bL (U0). Niech
B będzie L - bitową zmienną pomocniczą
oraz q < p/2 i 0 < s < p− q.

1. B = ((A� q) xorA)� (L− p)
2. A = (A� s) xor (B � (L− s))
3. Return A: goto 1,

gdzie A� k oznacza przesunięcie bitów reprezen-
tacji binarnej o k pozycji w lewo i uzupełnienie

zerami zwolnionych bitów.
Drugi powszechnie znany generator Tezuki (1995)

jest kombinacją trzech generatorów Tauswortha i
zwraca

A(1) xorA(2) xorA(3),

gdzie A(i) jest wynikiem i - tego generatora Tau-
swortha.

Zadanie 2. Zaimplementuj w C/C++ algorytm
Tezuki dla L = 32 oraz

Generator p q s (inicjalizacja) s (generacja)
1. 28 9 4 13
2. 29 2 3 20
3. 31 6 1 17

Rozwiązanie:

#include <stdio.h>
static unsigned int s1,s2,s3;
void init(unsigned int i, unsigned int j,
unsigned int k){

unsigned int b;
s1=i; s2=j, s3=k;
b=((s1<<9)^s1)<<4;
s1=(s1<<4)^(b>>28);
b=((s2<<2)^s2)<<3;

s2=(s2<<3)^(b>>29);
b=((s3<<6)^s3)<<1;
s3=(s3<<1)^(b>>31);

}
double combT(){

unsigned int b;
b=((s1<<9)^s1)<<4;
s1=(s1<<13)^(b>>19);
b=((s2<<2)^s2)<<3;
s2=(s2<<20)^(b>>12);
b=((s3<<6)^s3)<<1;
s3=(s3<<17)^(b>>15);
return (s1^s2^s3)*2.3283064365e-10;

}
void main(void){

int i;
init(12,34,56);
for(i=0;i<100;i++)

printf("%f\n",combT());
}

�

Generatory Fibonacciego

Pierwszy tego typu generator został zaproponowa-
ny przez Taussky i Todd (1956). Jest on imple-
mentacją wzoru rekurencyjnego Fibonacciego

Xn = Xn−2 +Xn−1 mod m, n ­ 2.

Niestety nie spełnia on testów niezależności liczb
losowych. Tej wady nie ma bardziej ogólna postać
generatora, którą oznaczamy F (r, s,�), a zadana
jest wzorem

Xn = (Xn−r �Xn−s) mod m, n ­ r ­ s ­ 1,

gdzie � oznacza jedną z operacji +, −, ∗, xor.
Jeżeli m = 2L, to okres generatorów F (r, s,+),
F (r, s,−) wynosi (2r−1)L−1, generatora F (r, s, ∗)
wynosi (2r − 1)L−3, a generatora F (r, s, xor) wy-

nosi (2r−1). Najlepsze własności statystyczne ma
generator z operacją mnożenia.

Tabela 2: Przykładowe wartości r i s dające mak-
symalne okresy

r 17 31 55 68 97 607 1279
s 5 13 24 33 33 273 418

Zadanie 3. Zaimplementuj w C/C++ generator
F (97, 33, ◦), gdzie

x ◦ y =
{
x− y x > y,
x− y + 1 x < y.

Zainicjuj początkową tablicę 97 liczb za pomocą
ciągu bitów

(0.b1b2 . . . b24, 0.b25b26 . . . b48, . . .)

gdzie bn liczymy następująco

yn = (yn−3 · yn−2 · yn−1) mod 179
zn = (52zn−1 + 1) mod 169

bn =
{
0 (yn · zn mod 64) < 32
1 w p.p.

Rozwiązanie:

#include <stdio.h>
#include <math.h>
static double uu[97];
static int ip=97;
static int jp=33;
void restart(int i, int j, int k, int l){
int ii,jj,m,wi,wj,wk,wl; double s,t;
wi=i;wj=j;wk=k;wl=l;
for(ii=0;ii<97;ii++){

s=0;t=0.5;
for(jj=1;jj<=24;jj++){

m=(((wi*wj)%179)*wk)%179;
wi=wj; wj=wk; wk=m;
wl=(53*wl+1)%169;
if((wl*m)%64>=32)s+=t;
t*=0.5;

}
uu[ii]=s;

}
}

double uni(void){
double pom;
pom=uu[ip-1]-uu[jp-1];
if(pom<0.0)pom+=1;
uu[ip-1]=pom;
ip--;
if(ip==0)ip=97;
jp--;
if(jp==0)jp=97;
return(pom);

}

void main(void){
int i;
restart(12,34,56,78);

for(i=0;i<100;i++)
printf("%f\n",uni());

}

�

Generatory uniwersalne

Przez generator uniwersalny rozumiemy generator
dający identyczne wyniki na komputerach, w któ-
rych liczby całkowite są reprezentowane przez co
najmniej 16 bitów, a liczby w arytmetyce zmienno-
pozycyjnej mają przynajmniej 24 bitową mantysę.

Przykładem takiego generatora jest generator
MZT (Marsaglia, Zaman, Tsanga, 1990) generu-
jący liczby losowe o rozkładzie równomiernym na
odcinku [0, 1). Spełnia on wszystkie znane testy
statystyczne i ma duży okres, równy 2144. Genera-
tor ten jest kombinacją dwóch prostych generato-
rów

Un = Vn ◦ cn,

gdzie Vn jest wynikiem generatora F (97, 33, ◦), a

cn =cn−1 ? (7654321.0/16777216.0), n ­ 2,
c1 =362436.0/16777216.0

c ? d =
{
c− d c ­ d
c− d+ 16777213.0/16777216.0 c < d.

Zadanie 4. Zaimplementuj w C/C++ generator
MZT.

Rozwiązanie:

#include <stdio.h>
#include <math.h>
static double uu[97];
static int ip=97;
static int jp=33;
static double cc=362436.0/16777216.0;
static double cd=7654321.0/16777216.0;
static double cm=16777213.0/16777216.0;
void restart(int i, int j, int k, int l){
int ii,jj,m,wi,wj,wk,wl; double s,t;
wi=i;wj=j;wk=k;wl=l;
for(ii=0;ii<97;ii++){

s=0;t=0.5;
for(jj=1;jj<=24;jj++){

m=(((wi*wj)%179)*wk)%179;
wi=wj; wj=wk; wk=m;
wl=(53*wl+1)%169;
if((wl*m)%64>=32)s+=t;
t*=0.5;

}
uu[ii]=s;

}
}
double uni(void){

double pom;
pom=uu[ip-1]-uu[jp-1];
if(pom<0.0)pom+=1;
uu[ip-1]=pom;
ip--;
if(ip==0)ip=97;
jp--;
if(jp==0)jp=97;

cc-=cd;
if(cc<0.0)cc+=cm;
pom-=cc;
if(pom<0.0)pom+=1;
return(pom);

}
void main(void){

int i;
restart(12,34,56,78);
for(i=1;i<100;i++)
printf("%f\n",uni());

}

�

Uwaga 1. Nie ma żadnego wyraźnego powodu by
formuły rekurencyjne miały dawać liczby losowe
lub nawet wyglądające na losowe. To, że tak jest
wydaje się raczej zaskakujące! Całkowicie różny od
przedstawionych generatorów jest generator o na-
zwie RANLUX. Niestety nie ma zrozumienia dla
teorii na podstawie, której powstał. Przeszedł on
pomyślnie wszystkie najsurowsze testy statystycz-
ne. Jednak jest on pomijany milczeniem przez nie-
mal wszystkich matematyków i ekspertów od ge-
neratorów liczb losowych.

