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unktem wyjscia w metodzie Romberga jest wor
trapezéw. Stosujemy go dzielac przedziat na 2"
podprzedziatéw réwnej dtugosci
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Sumy R(n,0) obliczamy rekurencyjnie, aby unik-
nac wielokrotnego obliczania wartosci funkcji f w
tych samych punktach tzn.
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Kolejnym krokiem jest poprawienie otrzymanych
wynikéw, wykorzystujac nastepujacy nietrywialny
fakt. Dla funkcji odpowiednio regularnej mamy
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i mamy lepsze przyblizenie catki
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Powtarzajac powyzsze rozumowanie (tak jak w eks-
trapolacji Richardsona) mamy wzér rekurencyjny
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gdzie m = 0,2,...,n. Za najlepsze przyblizenie
catki przyjmujemy element R(n,n), ktérego btad
wynosi O(h2").



Zadanie 1. Wyznacz z wykorzystaniem metody
Rombera przyblizone wartosci ponizszych catek dla
n=2.
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Zadanie 2. Napisz w MATLAB-ie program realizu-
jacy metode Rombera. Deklaracja funkcji powinna
by¢ nastepujaca:

R=romberg(f,a,b,M),

gdzie
f — nazwa funkgji,



a, b — poczatek i koniec przedziatu,
M — liczba krokéw,

R — tablica przyblizen catki.
Rozwigzanie: romberg.m
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Zadanie 3. Sprawd? program romberg wyznacza-
jac ponizsze catki.

2w



