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ednym ze sposobdw wyznaczenia pochodnej funk-
cji w ustalonym punkcie jest wykorzystanie po-
znanej wczesniej interpolacji wielomianowej. Majac
dane punkty opisujace argumenty i odpowiadajace
im warto$ci funkcji mozemy interpolowa¢ funkcje
wielomianem, a nastepnie dla otrzymanego wielo-
mianu wyznaczy¢ warto$¢ szukanej pochodne;.

Zadanie 1. Znajac wartosci funkcji f w punktach
Xo, T1, T Wyznacz wartos¢ pochodnej f'(x1). Sko-
rzystaj z interpolacji wielomianowej Lagrange’a.
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Inny sposéb wyznaczenia pochodnej polega na
bezposrednim zastosowaniu definicji. Przypomnij-
my, ze pochodna definiujemy jako granice ilorazu
réznicowego tzn.
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Pomijajac znak granicy, dla ustalonego przyrostu
h, otrzymujemy przyblizenie

Btad powyzszego przyblizenia wynosi O(h) (wyni-
kajacy bezposrednio z twierdzenia Taylora).

Jezeli teraz zastosujemy przyblizenie (1) dla przy-
rostu prawostronnego i lewostronnego, a nastepnie
usrednimy otrzymane wyniki to otrzymamy znacz-



nie lepsze przyblizenie, ktérego bfad wynosi O(h?)
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Wzér (2) jest szczegblnym przypadkiem tzw. eks-
trapolacji Richardsona.



Ekstrapolacja Richardsona

Niech f bedzie odpowiednio regularna, wéwczas
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Odejmujac drugie réwnanie od pierwszego otrzy-
mujemy (co by$my otrzymali dodajac te réwna-
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nazywamy zerowym krokiem ekstrapolacji Richard-
sona.

Jezeli teraz napiszemy szereg Taylora dla przy-
rostéw h i h/2 to mamy

/(@) = 6(h) — h2FO (@) — O (@) +
f'(z) = ¢ (h) 2T @) — s O (@) +
o 24 1920

Mnozac drugie réwnanie przez 4 i odejmujac je od
pierwszego otrzymujemy
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gdzie przyblizenie pochodnej z btedem wynosza-
cym O(h%)
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nazywamy pierwszym krokiem ekstrapolacji Richard-
sona.

Powtarzajac powyzsze rozumowanie otrzymuje-
my kolejne kroki ekstrapolacji Richardsona. Mozna



je zapisa¢ w prostej do implementacji postaci
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gdzie D(M, M) oznacza M-ty krok ekstrapolacji
Richardsona.

Zadanie 2. Korzystajac ze wzoru Taylora wypro-
wadz wzér na przyblizanie drugiej pochodnej. Jaka
Jest doktadnos¢ zaproponowanego przyblizenia?



Rozwigzanie:
Flo+h) = @)+ hF'(@) + 312" @) + h O )
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Dodajac drugie réwnanie od pierwszego otrzymu-
Jjemy
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Zadanie 3. Stosujac zerowy oraz pierwszy krok
ekstrapolacji Richardsonadlah =1ih = % oblicz
wartosci pochodnych

a) f'(2) dla f(z) = 2?,
b) f'(0) dla f(z) = sinf(mL‘),
c) f/(0) dla f(x) =223 + 1.

Zadanie 4. Napisz w MATLAB-ie program realizu-
Jjacy algorytm ekstrapolacji Richardsona. Deklara-
cja funkcji powinna by¢ nastepujaca:

=richard(f,a,h,M),

gdzie

f — nazwa funkgji,

a — argument pochodnej,

h — przyrost,

M — liczba krokéw,

D — tablica przyblizen pochodne;.



Rozwigzanie: richard.m
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Zadanie 5. Przetestuj program richard dla wcze-
Sniejszych przyktadow.



