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oznana w poprzednim rozdziale metoda jest okre-
$lana jako bezposrednia metoda rozwiazania ukta-
du Ax = b. Po skonczonej liczbie krokéw otrzy-
mujemy doktadne rozwiazanie, gdyby nie btedy za-
okraglen.

Metoda iteracyjna dziata inaczej: tworzy ciag
wektoréw zbiezny do rozwigzania. Obliczenia prze-
rywamy, gdy rozwigzanie przyblizone osiagneto wy-
magana doktadnos$¢ lub po ustalonej liczbie ite-
racji. Dla wielkich uktadéw metody iteracyjne sa
szybsze i mniej zuzywaja pamieci.



Metoda Jacobiego
Niech bedzie dany uktad réwnan postaci:
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Z kazdego réwnania mozemy wyznaczy¢ jedng zmien-
na.
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Jezeli przyjmiemy, ze wstawiamy dane po prawej
stronie uktadu, a wyznaczamy wartosci po lewej
to otrzymujemy wzér iteracyjny.
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Twierdzenie 1. Jesli macierz A jest dominujaca
przekatniowo |a; ;| > >, |a; |, to metoda Ja-
cobiego jest zbiezna dla dowolnego wektora star-

towego 2,




Zadanie 1. Napisz w MATLAB-ie program rozwig-
zujacy uktad réwnan AX = B z wykorzystaniem
iteracyjnej metody Jacobiego. Macierz A jest ma-
cierza dominujaca przekatniowo (la; ;| > 3, a;,;
a wor iteracyjny jest zadany ponizszym réwnaniem.
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Do wyznaczenia doktadnosci rozwiazania wykorzy-
staj norme ||.||2. Deklaracja funkcji powinna by¢
nastepujaca:

[zn, err,k]=jacobi (4,B,z0,delta,max),

gdzie
A — macierz dominujaca przekatniowo,
B — wektor,



z0 — wektor poczatkowy,

delta — doktadnos¢ rozwiazania; Zadamy aby byt
spetniony warunek (|lzn — "~V < delta),
gdzie zn jest przyblizonym rozwigzaniem, a z("~1)
przedostatnim elementem ciagu,

max — ograniczenie na liczbe krokéw,; program nie
moze wykonal wiecej niz max iteracji,

zn — przyblizone rozwiazanie,

err — btad rozwiazania; err = ||z — 2"~V ||,,
gdzie ™), ("= s3 dwoma ostatnimi elementa-
mi ciagu,

k — liczba krokéw po ktorej wyznaczono rozwigza-
nie.

Rozwigzanie: jacobi.m



Metoda Gaussa-Seidela

Analizujac metode Jacobiego mozna zauwazyé, ze
niektére wartoSci mozna wyznaczy¢ korzystajac z
danych nie z kroku poprzedniego ale biezacego.
Woprowadzajac takie ulepszenie otrzymujemy wzér
rekurencyjny zwany metoda Gaussa-Seidela.
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Twierdzenie 2. Jesli macierz A jest dominuja-
ca przekatniowo |a; ;| > >, , to metoda




Gaussa-Seidela jest zbiezna dla dowolnego wekto-
ra startowego zO.

Zadanie 2. Napisz w MATLAB-ie program rozwia-
zujacy uktad réwnan AX = B z wykorzystaniem
iteracyjnej metody Gaussa-Seidela. Macierz A jest
macierzg dominujaca przekatniowo (la; ;| > >, |a; ;|)
a wor iteracyjny jest zadany ponizszym réwnaniem.
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Do wyznaczenia doktadnosSci rozwiazania wykorzy-

staj norme ||.||2. Deklaracja funkcji powinna by¢
nastepujaca:

[zn,err,k]=gseidel (4,B,z0,delta,mazx),

gdzie
A — macierz dominujaca przekatniowo,



B — wektor,

z0 — wektor poczatkowy,

delta — doktadnosé rozwiazania; Zadamy aby byt
spetniony warunek (||zn — 2"~ Y|y < delta),
gdzie zn jest przyblizonym rozwigzaniem, a z("~1
przedostatnim elementem ciagu,

max — ograniczenie na liczbe krokéw; program nie
moze wykonaé wiecej niz max iteracji,

zn — przyblizone rozwiazanie,

err — btad rozwiazania; err = ||z — 2"~V ||,,
gdzie (™, ("1 s3 dwoma ostatnimi elementa-
mi ciagu,

k — liczba krokdw po ktérej wyznaczono rozwigza-
nie.

Rozwigzanie: gseidel.m



Zadanie 3. SprawdZ programy jacobt oraz gseidel
rozwigzujac ponizszy ukfad réwnan.

3r1+x9+23=5
T+ 3x9 —x3 =3
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Uwaga 1. Powyzszy przyktfad pokazuje, ze meto-
da Gaussa-Seidela daje rozwigzanie z taka sama
dokfadnoscia jak metoda Jacobiego, ale po mniej-
szej liczbie krokéw. Z kolei, zaleta metody Jacobie-
go jest to, ze jest tatwa do zréwnoleglenia i w ta-
kim przypadku, bedzie szybsza od metody Gausa-
Seidela.



